

Spectrum Analyzer R&S FSP

The new medium-class standard

Features

- 21 cm TFT colour display
- 1 Hz to 10 MHz RBW
- RMS detector for fast and reproducible measurements on digitally modulated signals
- Measurement routines for TOI, ACPR, OBW, amplitude statistics
- EMI bandwidths and quasi-peak detector

Speed

- 2.5 ms minimum sweep time in frequency domain
- 1 µs sweep time in time domain
- Up to 30 GPIB measurements/s in frequency domain (including trace transfer)
- Up to 70 GPIB measurements/s in time domain (including trace transfer)
- Fast ACP measurement routine in time domain

Performance

- Total measurement uncertainty: 0.5 dB
- Displayed average noise level:
 -155 dBm (1 Hz)
- Phase noise:
 - -113 dBc (1 Hz) at 10 kHz
- Dynamic range of RMS detector: 100 dB
- Synthesized frequency setting

The new standard in the medium class ...

Features

The Spectrum Analyzers R&S FSP from Rohde & Schwarz are outstanding for their innovative measurements and a host of standard functions.

Instead of a wide choice of options, the R&S FSP offers as standard all the functions and interfaces you may expect from a state-of-the-art spectrum analyzer:

- Largest colour display in its class
- Resolution bandwidths from 1 Hz to 10 MHz
- Highly selective digital filters and FFT
- Quasi-peak detector and EMI bandwidths
- Convenient documentation of results as a hardcopy or file in PC-compatible formats
- Interfaces: GPIB, Centronics, RS-232-C, LAN (option)
- Automatic test routines for measuring TOI, OBW, phase noise and ACP (R)
- Split screen with separate settings and up to 3 traces per screen
- Editable limit lines including PASS/FAIL indication
- Fast measurements in the time domain: minimum sweep time 1 µs
- Gated sweep for measurements on TDMA signals

In addition, the R&S FSP features the following unique attributes as standard:

 RMS detector for fast and reproducible power measurements on digitally modulated signals in frequency and time domain Statistical measurement functions for determining crest factor and CCDF (complementary cumulative distribution function)

Featuring such a wealth of functions, the R&S FSP offers state-of-the-art spectrum analysis at an extremely attractive price/performance ratio.

Speed

Time is a finite resource — so high measurement speed is indispensable for competitiveness and cost-effective testing.

Here, too, the new R&S FSP offers characteristics that make it top of the class:

- Up to 30 measurements/s on GPIB interface including trace transfer of 501 binary data
- 70 measurements/s on GPIB interface in zero span mode including trace transfer of 501 binary data
- Minimum sweep time of 2.5 ms

- 1 µs time domain measurements
- Unique fast ACP mode for high-speed ACPR measurements in time domain using the standard-stipulated test filters

With 30 measurements/s in manual operation and digital filters with sweep time 2.5 times faster than comparable analog filters, the R&S FSP will also help you in your day-to-day work to develop your product much faster.

Performance

Modern communication systems are required to achieve optimum spectral efficiency at high data rates. For the 3rd generation of CDMA mobile radio systems currently under development, this is achieved, among other things, by high-precision power control.

The R&S FSP is the ideal partner in development and production, featuring small level measurement uncertainty, as well as excellent RF characteristics:

- 0.5 dB total measurement uncertainty allows higher tolerances for the DUT, thus increasing production yield
- 0.07 dB linearity uncertainty (1 σ) is ideal for precise measurements, for example of gain control and ACPR
- RMS detector with >100 dB dynamic range measures power fast and accurately irrespective of the signal shape

 almost like a thermal power sensor
- The displayed average noise level of typ. –155 dBm (1 Hz) is attained without the use of preamplifiers and thus without any reduction in dynamic range
- Typ. –145 dBc (1 Hz) phase noise at 10 MHz offset offers optimum conditions for ACPR measurements on WCDMA systems

Resolution bandwidths of up to 100 kHz are fully digital and provide — in addition to high selectivity — an ideal basis for accurate (adjacent-) channel power measurements owing to a maximum bandwidth deviation of 3%.

with high-end characteristics

High-end characteristics ...

Rohde & Schwarz ASICs

Top-class performance as offered by the R&S FSP essentially depends on the extensive use of digital signal processing and large-scale integration of components.

For these demanding tasks, Rohde & Schwarz has developed ASICs tailored to the requirements of signal analysis. Key functions such as

Logarithmic amplifier

The R&S FSP is equipped as standard with digital resolution filters between 10 Hz and 100 kHz of high selectivity and very small bandwidth deviation. The filters have an extremely small logarithmic level deviation of <0.2 dB in the range 0 dB to -70 dB. As they are implemented as ASIC functions, their great precision is attained without any reduction in measurement speed.

furnishes 10⁶ single values in only 250 ms, thus enabling extremely accurate statistical analysis even of rarely occurring signal peaks.

This analysis function, which is becoming more and more important, has been realized for the first time in the Spectrum Analyzer R&S FSP as a fast and cost-effective solution based on ASICs.

logarithmation,

CCDF measurement

are "cast into silicon" and are thus faster than conventional solutions.

RMS detector

The RMS detector — a unique feature in all current Rohde & Schwarz spectrum analyzers — fast yields stable and reproducible results also for complex signals such as CDMA. With a very large number of linear single measurements performed, followed by power integration, the detector avoids the measurement error inherent in conventional analyzers and due to the averaging of the log video signal. The RMS detector of the R&S FSP spectrum analyzer measures all modern communication signals with an accuracy and speed unparalleled so far.

CCDF

The complementary cumulative distribution function, or briefly CCDF, describes the probability of a signal power exceeding a specific (usually the average) power. CCDF analysis is indispensable for determining the optimal transmitting power for CDMA signals assuming that clipping over known, short intervals is tolerable. The R&S FSP with its dedicated CCDF measurement routine

The platform

Excellent specifications like those of the R&S FSP require a high-grade and service-friendly platform. All the modules are optimally shielded and easy to exchange, and are accommodated in a lightweight but stable frame. A low-noise powerful fan in conjunction with low power consumption of 70 VA to 150 VA (depending on model) makes for high reliability.

A 2-year calibration interval (excluding the reference frequency) and a 3-year warranty worldwide are offered with the R&S FSP.

Fit for the future

Thanks to its modular design, the R&S FSP is optimally equipped to cope with all present and future tasks. The design takes into account both hardware and firmware extensions to safeguard your investment far into the future. So you can rely on your R&S FSP to meet all requirements also in the years to come.

Ergonomics & design

The R&S FSP sets the ergonomic standard in this class of analyzers. The 21 cm (8.4") colour display is the largest and most brilliant in its category. Vertical and horizontal rows of softkeys allow the convenient handling even of complex measurement tasks. Parameters like frequency and amplitude are entered by means of dedicated hardkeys and unit keys.

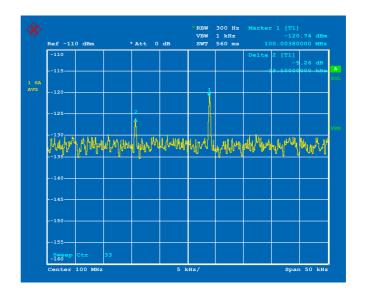
... through innovative solutions

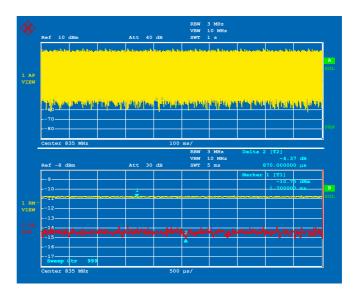
Innovative solutions ...

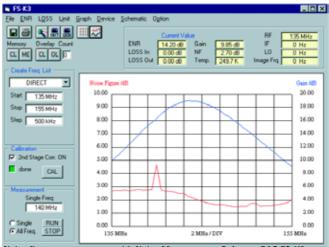
Optimum dynamic range

Featuring the lowest displayed average noise level in its class (DANL <—145 dBm at 10 Hz RBW), the R&S FSP measures even small signals accurately without the use of preamplifiers whilst maintaining the full dynamic range. Together with the high intercept point this yields an intermodulation-free range of typically 100 dB — again a record in the medium class of analyzers.

Ultralow measurement uncertainty


In the vital frequency range below 3 GHz, the R&S FSP is outstanding for its ultra-low measurement uncertainty. The total measurement uncertainty is less than 0.5 dB. Due to this excellent value, the use of power meters in routine lab applications very often becomes superfluous and DUTs may be allowed greater tolerances.


RMS detector

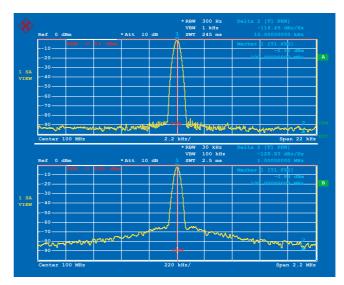

The unique RMS detector used in spectrum analyzers from Rohde&Schwarz measures modern, noise-like communication signals with optimal repeatability and stability. As there are neither correction factors nor the typical errors caused by averaging of logarithmic trace data, so the correct average power is displayed with high stability for all signal types — almost like in measurements with a thermal power meter.

Noise figure measurements

Owing to its excellent display linearity, the R&S FSP is also ideal for noise figure measurements. The optional Noise Measurement Software R&S FS-K3 enhances the R&S FSP to form a noise measurement system offering analyzer-specific advantages (see data sheet PD 0757.2380).

Noise figure measurement with Noise Measurement Software R&S FS-K3

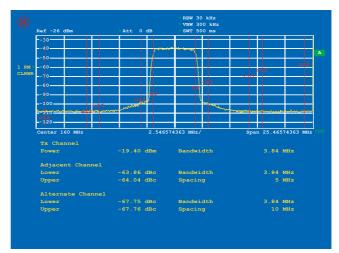
Phase noise


The low phase noise of the R&S FSP makes it suitable for demanding measurement tasks both in the vicinity of the carrier (typ. –113 dBc (1 Hz) at 10 kHz) and far from the carrier (typ. –125 dBc (1 Hz) at 1 MHz). The R&S FSP is thus optimally equipped for performing spectral analysis and ACPR measurements on narrowband systems like IS136 or PDC as well as on wideband systems like IS95 or WCDMA.

CCDF analysis

The R&S FSP is the first spectrum analyzer to offer statistical analysis of signals by means of the complementary cumulative distribution function (CCDF) as standard and at an impressively high speed. The R&S FSP furnishes in only 250 ms the exact CCDF characteristic, average and peak power as well as the crest factor over 1 million measured values.

ACPR measurements


Adjacent-channel power ratio (ACPR) measurements, which many mobile radio standards stipulate for components and devices, are implemented in the R&S FSP by means of automatic test routines. All settings, measurements and filters required for a selected standard are activated at a keystroke. In addition to a large number of preprogrammed standards, the channel width and channel spacing can be individually selected. Owing to the excellent dynamic range, lowest phase noise in its class and the RMS detector, the R&S FSP sets the standard in the medium class also for ACPR measurements.

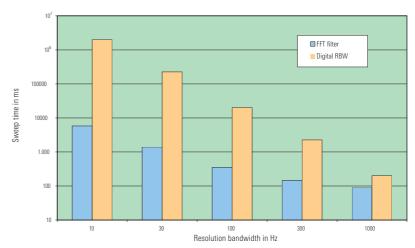
Phase noise measurement with the R&S FSP

CCDF of a WCDMA signal

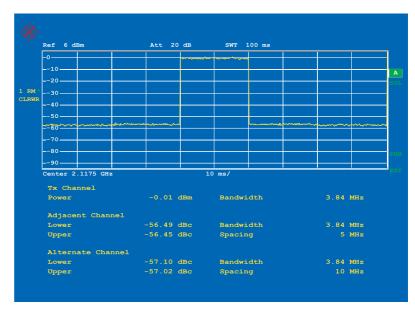
(Adjacent-) channel measurement on a WCDMA signal

...for research & development

Innovative solutions...


High measurement speed

With 30 measurements/s in manual operation, minimum sweep time of 2.5 ms and 1 µs zero span as standard, the R&S FSP is ideal for time-critical applications. The highly selective, fast-sweeping digital filters featuring "analog" response allow measurements on pulsed signals as well as the use of the built-in frequency counter.

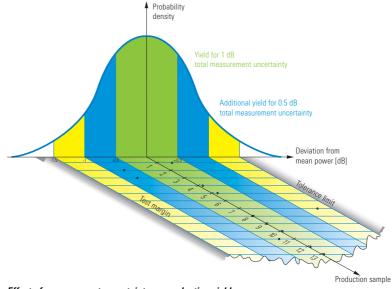

The R&S FSP comes standard with different filter types for digital resolution bandwidths up to 100 kHz such as Gaussian filter, raised root cosine (RRC) filter and steep-sided channel filters. Up to a resolution bandwidth of 30 kHz, fast Fourier transform (FFT) is available in addition. In the analyzer mode, the Gaussian filters have the advantage of high sweep speed plus excellent resolution. At high span/ RBW ratios, measurements using FFT can be as much as 300 times faster than measurements with digital filters. Some mobile radio standards such as TETRA and IS136 require RRC filters for power measurement, this type of filter already being included in the R&S FSP. In addition, the R&S FSP provides channel filters for other analog and digital methods, e.g. cdma-One, AM/FM radio and ETS 300 113. Adjacent-channel power due to switching can also be measured using the channel filters. For the common mobile radio standards, the R&S FSP is equipped with test routines that allow the adjacent-channel power in the time domain to be determined, which reduces measurement time and increases reproducibility.

The standard high-speed GPIB interface enables up to 30 measurements per second including trace data transfer of 501 test

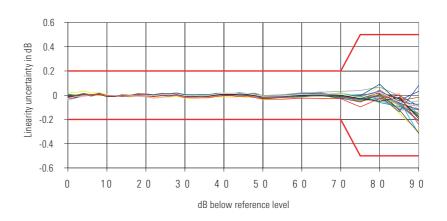
Comparison of sweep times for 200 kHz span using digital filters or FFT

Measurement of adjacent-channel power in time domain: FAST ACP

	Sweeps/s Span 10 MHz, sweep time 2.5 ms	Sweeps/s Span 0 Hz, sweep time 100 µs
ASCII format	25	40
Binary IEEE754 format	30	70


Measurement speed on GPIB interface Settings: display off, default coupling, single trace, 501 points points with the display switched off. In the zero span mode, 70 measurements/s are possible. This characteristic makes the R&S FSP by far the fastest spectrum analyzer on the GPIB interface. Valuable time can be saved in production and the throughput boosted enormously. The R&S FSP thus supports you in getting your products more cost-effective on the market.

0.5 dB total measurement uncertainty


Measurement uncertainty can be split into the contribution from the instrument and that introduced by the test setup. With a smaller uncertainty of the spectrum analyzer, greater tolerances can be allowed for the test setup. If the small uncertainty of the analyzer is utilized to allow for higher DUT tolerances, the result will be a marked reduction of manufacturing rejects — an advantage that pays off immediately. With a total measurement uncertainty of 0.5 dB, The R&S FSP undisputedly ranks top way ahead of other medium-class analyzers.

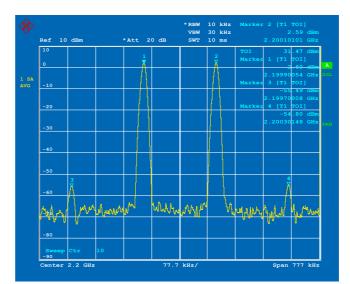
0.2 dB maximum linearity uncertainty

All modern mobile radio systems achieve high spectral efficiency through precise control of transmitter output power, among other measures. The correct functioning of gain control, which may be as much as -70 dB depending on the system, is checked against the nominal value in a large number of individual measurements. Featuring a maximum linearity uncertainty of only 0.2 dB and fast power measurement routines especially for digitally modulated signals, the R&S FSP is the ideal choice wherever the reduction of the test time and the number of rejects is of primary importance.

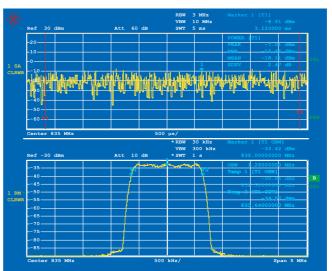
Effect of measurement uncertainty on production yield

Display linearity with ≤100 kHz resolution bandwidth (measurement on 30 devices)

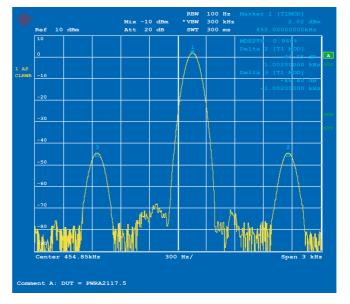
...for production


Innovative solutions ...

Measurement routines TOI, OBW ...


The R&S FSP offers fast routines for a multitude of typical measurement tasks, which make result postprocessing superfluous by supplying the desired data directly:

- Determination of TOI
- Occupied bandwidth (OBW)
- Burst power with peak, average and RMS indication as well as standard deviation
- Modulation depth of AM signals
- Phase noise
- Bandwidth marker


Of course these functions can also be used via the fast GPIB interface.

Measurement of TOI

Measurement of burst power (top) Determination of OBW (bottom)

Measurement of modulation depth of AM signal

Remote control of R&S FSP via IEC/IEEE bus in list mode cuts down on measurement time

List Mode

In the List mode, the user only has to enter a few IEC/IEEE bus commands to perform measurements on a maximum of 100 frequencies with different instrument setups in each individual case. A single command configures the list, and frequency, bandwidths, measurement time, reference level and RF attenuation can be set independently of each other. The SENSE:LIST:POWER:RESULT? query, for example, simultaneously transfers all measurement results to the process controller after the list has been processed. This feature reduces the time required for transfer via the IEC/IEEE bus. In conjunction with the very high measurement speed of the R&S FSP, it also allows the generation of time-saving test routines in production applications.

Electronic attenuator for high production throughput

The optional Electronic Attenuator R&S FSP-B25 supplements the standard mechanical attenuator and provides a wear-and-tear-free setting range of 30 dB in 5 dB steps. The option does away with frequent switching of the mechanical attenuator as required for high throughput in production and so increases the availability and reliability of the measurement facility. The limit of 10⁷ switching operations, which is typical of mechanical attenuators, means a breakdown after approx. 6 months already at 1.5 switching operations/s whereas the Electronic Attenuator R&S FSP-B25 can be switched any number of

times without degrading the specifica-

The integrated switchable 20 dB preamplifier allows high-sensitivity measurements in the useful frequency range from 10 MHz to 7000 MHz.

LAN interface

With the aid of the optional LAN Interface R&S FSP-B16, the R&S FSP can be connected to common networks such as 100Base-T so that functions like file logging on network drives or documentation of measurement results via network printer are available. In addition, the R&S FSP can be remote-controlled via LAN. This yields a clear speed advantage over the IEC/IEEE bus in particular for the transmission of large data blocks.

859x/8566-compatible IEC/IEEE bus command set

In many applications, existing test software is to be used in automatic test systems with new devices. For this reason, the R&S FSP is provided as standard with an IEC/IEEE bus command set that is compatible not only with the R&S FSEx/FSIQ family but also with the spectrum analyzers of the 859x/8566 series.

It was of utmost importance to achieve maximum compatibility.

- Approx. 175 commands in IEEE488-2 format (incl. CF, AT, ST)
- The most important commands in IEEE488-1 format (8566A, for exclusive use only)
- Selectable presets
- Selectable trace format

The IEC/IEEE bus commands in IEEE488-2 format can be used together with the R&S FSP command set, so that it is possible to enhance and complete available software by using the innovative instrument functions of the R&S FSP (such as list mode, channel filters) without having to redesign the test software.

... for production

Innovative solutions ...

GSM/EDGE measurements

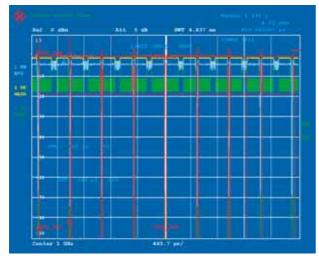
Application Firmware R&S FS-K5 allows the user to perform the most important GSM and EDGE transmitter measurements at a keystroke:

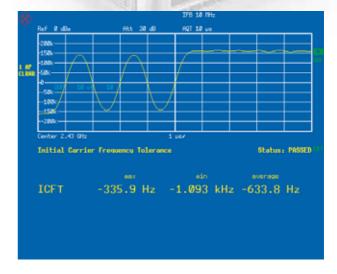
- Phase/frequency error (GSM)
- Modulation accuracy (EDGE) including 95:th percentile and origin offset suppression
- Power-versus-time
- Carrier power
- Modulation spectrum
- Transient spectrum
- Spurious emissions

- Automatic limit value monitoring
- Ideal for use in development and production of Bluetooth modules

Standard 3GPP modulation and code domain power measurements

- Adds measurement functions in line with the 3GPP specifications for the FDD mode
- For BTS/node B signals: Application Firmware R&S FS-K72
- For CDMA2000/3GPP3 base station signals: Application Firmware FS-K82

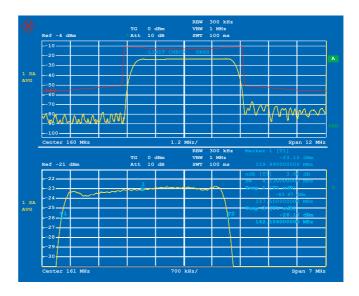

- For UE signals: Application Firmware R&S FS-K73
- High measurement speed of 4 s/measurement
- Code domain power and CPICH power
- Code domain power and rho (CDMA2000/3GPP2)
- EVM and PCDE
- Code domain power versus slot
- EVM/code channel
- Spectrum emission mask


BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., USA and licensed to Rohde & Schwarz.

Bluetooth TM signal measurements

- Enhanced measurement functionality in line with Bluetooth RF Test Specification (Bluetooth SIG) Rev. 0.91
- Measurement functions
 - Output power
 - Adjacent channel power (ACP)
 - Modulation characteristics
 - Initial carrier frequency tolerance (ICTF)
 - Carrier frequency drift
- Simultaneous display of traces and all numerical measurement results

Туре	Designation and/or application	Additionally required options in the R&S FSP
R&S FS-K5	Modulation and spectrum measurements on GSM/EDGE base station and mobile signals	8
R&S FS-K7	FM measurement demodulator for general applications	
R&S FS-K8	Bluetooth transmitter measurements	
R&S FS-K72	Modulation and code domain power measurements to 3GPP TS 24.141 on base station signals (node B)	R&S FSP-B15 and R&S FSP-B70
R&S FS-K73	Modulation and code domain power measurements to 3GPP TS 25.121 on mobile station signals (UE)	R&S FSP-B15: slot-based mea- surements R&S FSP-B70: additionally re- quired for frame-based mea- surements
R&S FS-K82	Modulation and code domain power measurements to CDMA2000/3GPP2 on base station signals	0
R&S FS-K3	Noise figure measurements (Windows software)	11年以
R&S FS-K4	Phase noise measurements (Windows software)	Preamplifier, e.g. R&S FSP-B25 for R&S FSP3/7


Scalar network analysis in wide dynamic range and at any frequency offset

The optional Internal Tracking Generator R&S FSP-B9 up to 3 GHz and External Generator Control R&S FSP-B10 extend the R&S FSP spectrum analyzers to scalar network analyzer functionality. The gain, frequency response, insertion and return loss are measured using a selective method in a wide dynamic range without any influence from the harmonics or spurious of the generator. The Internal Tracking Generator R&S FSP-B9 can be used in all R&S FSP models and covers the frequency range from 9 kHz to 3 GHz. A frequency offset of ±150 MHz can be set for measurements on frequency-converting modules. The tracking generator can be broadband-modulated by an external I/Q baseband signal. Phase Noise Measurement Software R&S FS-K4 enhances the Spectrum Analyzer R&S FSP to form a phase noise tester.

R&S FSP-B10 option uses commercial RF signal generators as its external tracking source that can be controlled via the GPIB or a TTL bus. With this option the functionality of the internal tracking generator can be utilized:

- Normalization with interpolation also for reflection measurements with open and short
- Automatic bandwidth measurement with "n dB down" function
- Tolerance lines with PASS/FAIL verdict

R&S FSP-B6 option makes the Spectrum Analyzers R&S FSP suitable for analog TV measurement applications and provides a settable RF level trigger for measurements on pulsed RF signals that are used in TDMA transmission systems.

...through custom-made options

Complete measurement solutions...

Environmental compatibility

- Fast and easy disassembly
- Small number of materials
- Compatibility of materials
- Easy identification of substances through appropriate marking (plastics)
- Recycling of enclosure



- PC-compatible screenshots, no conversion software needed
- Windows™ printer support
- LabWindows driver
- LabView driver
- SCPI-compatible
- R&S FSE/R&S FSIQ-compatible GPIB command set
- GPIB command set with search function on CD-ROM
- Customized training
- Solution-oriented consulting
- Application notes
- 3-year warranty
- 2-year calibration cycle

...and much more

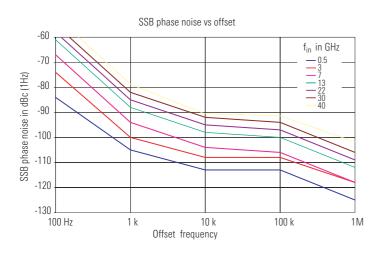
...no guessing games

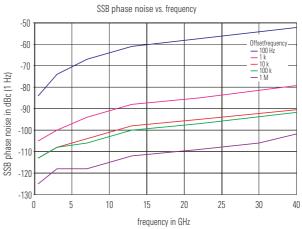
Specifications

Specifications are valid under the following conditions:

 $15\ minutes\ warm-up\ time\ at\ ambient\ temperature,\ specified\ environmental\ conditions\ met,\ calibration\ cycle\ adhered\ to,\ and\ total\ calibration\ performed.$

Data without tolerances: typical values only.


Data designated "nominal" apply to design parameters and are not tested.


Data designated " $\sigma = xx dB$ " are shown as standard deviation.

	R&S FSP3	R&S FSP7	R&S FSP13	R&S FSP30	R&S FSP40
Frequency					
Frequency range	9 kHz to 3 GHz	9 kHz to 7 GHz	9 kHz to 13.6 GHz	9 kHz to 30 GHz	9 kHz to 40 GHz
Frequency resolution			0.01 Hz		
Internal reference frequency (nominal)					
Aging per year ¹⁾			1×10^{-6}		
Temperature drift			1×10^{-6}		
with option R&S FSP-B4 (OCXO)	ı				
Aging per year ¹⁾			1×10^{-7}		
Temperature drift			1×10^{-8}		
External reference frequency			10 MHz		
Frequency display		wit	h marker or frequency cou	nter	
Marker resolution	span/500				
Max. deviation (sweep time >3 x auto sweep time)	± (frequency x reference frequency + 0.5% x span + 10% x resolution bandwidth + ½ (last digit))				
Frequency counter resolution		().1 Hz to 10 kHz (selectable	e)	
Count accuracy (S/N >25 dB)		±(frequency	x reference frequency + 1	/2 (last digit))	
Frequency span	0 Hz, 10 Hz to 3 GHz	0 Hz, 10 Hz to 7 GHz	0 Hz, 10 Hz to 13.6 GHz	0 Hz, 10 Hz to 30 GHz	0 Hz, 10 Hz to 40 GHz
Max. span deviation			0.1%		1
Spectral purity (dBc (1 Hz)) SSB phase noi	ise, $f = 500 \text{ MHz}$, for $f > 5$	500 MHz see diagrams b	elow		
Carrier offset					
100 Hz			<-84, -90 typ.		
1 kHz			<-100, -108 typ.		
10 kHz			<-106, typ113 typ.		
100 kHz ²⁾			<-110, -113 typ.		
1 MHz ²⁾			<-120, -125 typ.		
10 MHz			-145 typ.		
Residual FM	I				
f = 500 MHz, RBW 1 kHz, sweep time 100 ms			3 Hz typ.		

¹⁾ After 30 days of operation.

²⁾ Valid for span >100 kHz.

Typical values for SSB phase noise(referred to 1 Hz bandwidth):

Offset	f _{in} = 3 GHz	f _{in} = 7 GHz	f _{in} = 13 GHz	f _{in} = 22 GHz	f _{in} = 26 GHz	f _{in} = 40 GHz
100 Hz	-74 dBc	-67 dBc	-61 dBc	-57 dBc	-55 dBc	-52 dBc
1 kHz	-100 dBc	-94 dBc	-88 dBc	-84 dBc	-82 dBc	-79 dBc
10 kHz	-108 dBc	-104 dBc	-98 dBc	-94 dBc	-92 dBc	-91 dBc
100 kHz	-108 dBc	-106 dBc	-100 dBc	-96 dBc	-94 dBc	-92 dBc
1 MHz	-118 dBc	-118 dBc	-112 dBc	-108 dBc	-106 dBc	-102 dBc

	R&S FSP 3	R&S FSP 7	R&S FSP13	R&S FSP30	R&S FSP40		
Sweep time			_		.		
Span ≥10 Hz		2.5 ms to 16000 s					
Max. deviation			1%				
Span 0 Hz			1 µs to 16000 s				
Resolution			125 ns				
Resolution bandwidths							
Bandwidths		10 Hz	to 10 MHz (–3 dB) in 1, 3 s	equence			
EMI bandwidths		2	00 Hz, 9 kHz, 120 kHz (–6 c	dB)			
Bandwidth accuracy							
≤100 kHz			<3%				
300 kHz to 3 MHz			<10%				
10 MHz			+10%, -30%				
Shape factor –60 dB: –3 dB							
≤100 kHz			<5:1 (Gaussian filters)				
300 kHz to 3 MHz		<15:1	4-pole synchronously tune	ed filters)			
10 MHz			<7:1				
Shape factor –60 dB: –6 dB							
EMI bandwidths			<5:1				
Video bandwidths		1	Hz to 10 MHz in 1, 3 seque	nce			
FFT filter							
Bandwidths		1 Hz to 30 kHz (– 3 dB) in 1, 3 sequence					
Bandwidth accuracy			5%, nominal				
Shape factor -60 dB:-3 dB			2.5:1 nominal				
Channel Filter							
Bandwidths	1; 1,5; 2; 2,4; 2,7; 3;		100; 200; 300; 500 Hz; 9; 10; 12,5; 14; 15; 16; 00; 500 kHz; 1; 1,228; 1,5		RRC); 25; 30; 50; 100		
Di		4:1-		20 dD			
Display range		изріа	yed average noise level to	30 05111			
Maximum input level	FO	V		0 V			
DC voltage RF attenuation 0 dB	50	V		U V			
CW RF power			20 dPm				
Pulse spectral density		20 dBm 97 dB _µ V (1 MHz)					
RF attenuation ≥10 dB			37 dbµv (1 lvii12)				
CW RF power			30 dBm				
Max. pulse voltage	150	1 V	30 ubili	50 V			
Max. pulse energy (10 µs)	1 m			0.5 mWs			
1 dB compression of input mixer	1 111	VVS		0.5 111005			
O dB RF attenuation, f>200 MHz			0 dBm nominal				
Intermodulation			o abiii lioilillal				
3rd-order intermodulation							
Intermodulation-free dynamic range	1 10101 2 v _30 dRm Af > 5 v	RRW or 10 kHz which	over is larger				
20 MHz to 200 MHz	, ιονσι 2 λ – συ αυπι, Δι > 3 λ	ווט איז ווט KIIZ, WIIICIII	>70 dBc, TOI >5 dBm				
200 MHz to 3 GHz		<u>~7/</u>	dBc, TOI >7 dBm (typ. 10	dRm)			
		>//	>80 dBc, TOI >10	•			
3 GHz to 7 GHz	_		>ou ubt, 101>10	ubiii (typ. 13 dbiii)			

	R&S FSP 3	R&S FSP 7	R&S FSP13	R&S FSP30	R&S FSP40
7 GHz to 13.6 GHz	_	-		>80 dBc, TOI >10 dBm	+
13.6 GHz to 30 GHz	_	_	_	>76 dBc, TOI >8 dBm	>80 dBc, TOI >10 dBn
30 GHz to 40 GHz	-	-	_	_	>80 dBc, TOI >10 dBn
with optional Electronic Attenuator R&S F	SP-B25 switched on		+	1	
20 MHz to 200 MHz	>74 dBc, T	OI >7 dBm		_	
200 MHz to 3 GHz	>80 dBc, TOI >10 dBm —				
3 GHz to 7 GHz	>84 dBc, T0	OI >12 dBm		_	
Second harmonic intercept point (SHI)	·				
<100 MHz			25 dBm typ.		
100 MHz to 3 GHz			35 dBm typ.		
3 GHz to 7 GHz	_		**	Bm typ.	
7 GHz to 13.6 GHz	_	_		45 dBm typ.	
13.6 GHz to 30 GHz	<u> </u>	_	_	1	Im typ.
30 GHz to 40 GHz	_	_	_	_	45 dBm typ.
Displayed average noise level					
(0 dB RF attenuation, RBW 10 Hz, VBW 1	Hz 20 averages trace av	rerage span () Hz termin	ation 50 O)		
Frequency	112, 20 avoragoo, traoo av	orago, opan o 112, tomini	ution 66 22)		
9 kHz			<-95 dBm		
100 kHz			<-100 dBm		
1 MHz			<—120 dBm, —125 dBm t	/n	
1 101112	<-142 dBm,		(—120 dbiii, —123 dbiii t	уР	
10 MHz to 1 GHz	-145 dBm typ.		<-140 dBm,	—145 dBm typ.	
1 GHz to 3 GHz	<-140 dBm, -145 dBm typ.	100 ID	<-138 dBm, -143 dBm typ.		
3 GHz to 7 GHz	_	<—138 dBm, —143 dBm typ.	<-135 dBm, -145 dBm typ. <-135 d		
7 GHz to 13.6 GHz	_	_	<-132 dBm,	-138 dBm typ	<-132 dBm
13.6 GHz to 22 GHz	-	-	_	<-120 dBm, -130 dBm typ.	-
22 GHz to 30 GHz	-	-	-	<-115 dBm, -123 dBm typ.	-
13,6 GHz to 20 GHz	_	-	-	-	<-120 dBm
20 GHz to 30 GHz	-	_	-	-	<-120 dBm
30 GHz to 40 GHz	_	_	_	_	<-112 dBm
Displayed average noise level with prea	mplifier on (option R&S	FSP-B25)			1
10 MHz to 2 GHz	<-15	2 dBm		_	
2 GHz to 7 GHz	<-15	O dBm		_	
Immunity to interference					
Image frequency			>70 dB		
Intermediate frequency (f <3 GHz)			>70 dB		
Spurious responses (f >1 MHz, without input signal, 0 dB attenuation)			<-103 dBm		
Other spurious (with input signal, mixer level <-10 dBm, Δ f >100 kHz)			f <7 GHz: <-70 dBc f <13.6 GHz: <-64 dBc		
(\= 10 ubiii, \Δi > 100 KΠΔ)			f <30 GHz: <-56 dBc		
Level display					
Screen		501 × 400 pixels (one dia	gram), max. 2 diagrams	with independent setting	S
Logarithmic level scale		10 d	B to 200 dB, in steps of	10 dB	
Linear level scale		10% of referen	nce level per level divisio	n (10 divisions)	
Traces		max. 3, with tw	o diagrams on screen ma	ax. 3 per diagram	
Trace detector			Auto Peak, Sample, Qua		
Trace functions			rite, Max. Hold, Min Hold	<u> </u>	
Number of test points			eps of approx. factor 2, 1	<u> </u>	
Setting range of reference level		22.,			
Logarithmic level display		-130 d	Bm to 30 dBm, in steps of	of 0.1 dB	
Linear level display			71 nV to 7.07 V in steps o		
Units of level scale	dRm dRm\			mA, µA, pW, nW (linear l	evel display)
OTHER OF IGNOT SOUTH	מטווו, מטוווע	, գերք, գերո, գերք (10)	g 10701 diopidy), IIIV, µV,	, pr., pvv, nvv (micai i	ovor uropiuy)

 $^{^{1}}$) RF attenuation 10 dB, sweep time >1 s/1 GHz

	R&S FSP 3	R&S FSP 7	R&S FSP13	R&S FSP30	R&S FSP40
Max. uncertainty of level measurement					
at 128 MHz, -30 dBm (RF attenuation 10 dB, RBW 10 kHz, ref. level -20 dBm)	$<$ 0.2 dB (σ = 0.07 dB)				
Frequency response					
<50 kHz			<+0.5/- 1.0 dB		
50 kHz to 3 GHz			$< 0.5 \text{ dB } (\sigma = 0.17 \text{ dB})$		
3 GHz to 7 GHz	_	<2 dB (s = 0.7 dB)	- C.5 dB (6 = 6.17 dB)	_	_
7 GHz to 13.6 GHz	_	~2 db (5 = 0.7 db)		<2.5 dB ¹⁾	
13.6 GHz to 30 GHz	_	_	_		dB ¹⁾
30 GHz to 40 GHz	_	_	_	_	<4 dB ¹⁾
Frequency response with option R&S FSP-	L B25 switched on Laream	l Inlifier, electronic attenua			V+ ub
10 MHz to 3 GHz		= 0.33 dB)	11017	_	
3 GHz to 7 GHz	- \(\frac{1}{4}\text{UD}\)\(\frac{1}\text{UD}\)\(\frac{1}\text{UD}\)\(\frac{1}	$< 2 \text{ dB } (\sigma = 0.7 \text{ dB})$			
Attenuator		\2 db (0 = 0.7 db)	$< 0.2 \text{ dB } (\sigma = 0.07 \text{ dB})$		
Reference level switching			$< 0.2 \text{ dB } (\sigma = 0.07 \text{ dB})$		
Display nonlinearity LOG/LIN (S/N >16	dR)		<0.2 db (0 = 0.07 db)		
RBW ≤100 kHz	шы				
0 dB to -70 dB			$< 0.2 \text{ dB } (\sigma = 0.07 \text{ dB})$		
-70 dB to -90 dB			$< 0.5 \text{ dB } (\sigma = 0.07 \text{ dB})$		
RBW ≥300 kHz			70.0 db (O = 0.17 db)		
0 dB to -50 dB			$< 0.2 \text{ dB } (\sigma = 0.07 \text{ dB})$		
-50 dB to -70 dB			$< 0.5 \text{ dB } (\sigma = 0.07 \text{ dB})$		
Bandwidth switching uncertainty (ref. t	DDW = 10 kUz/		<0.3 ub (O = 0.17 ub)		
10 Hz to 100 kHz	0 11DVV = 10 K112)		$< 0.1 \text{ dB } (\sigma = 0.03 \text{ dB})$		
300 kHz to 10 MHz			$< 0.2 \text{ dB } (\sigma = 0.03 \text{ dB})$		
1 Hz to 3 kHz, FFT			$< 0.2 \text{ dB } (\sigma = 0.03 \text{ dB})$		
Total measurement uncertainty			<0.2 db (0 = 0.03 db)		
O GHz to 3 GHz			0.5.dR		
0 0112 10 3 0112	0.5 dB				
Trigger functions					
Trigger functions					
Trigger					
Trigger Span ≥10 Hz		free		ovel	
Trigger Span ≥10 Hz Trigger source			run, video, external, IF le		
Trigger Span ≥10 Hz Trigger source Trigger offset					
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz		125 ns to 100 s	erun, video, external, IF le , resolution 125 ns min. (d	or 1% of offset)	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source		125 ns to 100 s	e run, video, external, IF le , resolution 125 ns min. (o e run, video, external, IF le	or 1% of offset) evel	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset		125 ns to 100 s free ±125 ns to 100 s, res	e run, video, external, IF le , resolution 125 ns min. (c e run, video, external, IF le olution 125 ns min., depe	or 1% of offset) evel ndent on sweep time	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset		125 ns to 100 s free ±125 ns to 100 s, res	e run, video, external, IF le , resolution 125 ns min. (o e run, video, external, IF le	or 1% of offset) evel ndent on sweep time	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep		125 ns to 100 s free ±125 ns to 100 s, res	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim	or 1% of offset) evel ndent on sweep time	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source		125 ns to 100 s free ±125 ns to 100 s, res	e run, video, external, IF le , resolution 125 ns min. (o e run, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video	or 1% of offset) evel ndent on sweep time	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay		125 ns to 100 s free ±125 ns to 100 s, res ±(1	e run, video, external, IF le , resolution 125 ns min. (o e run, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s	or 1% of offset) evel ndent on sweep time ne))	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length		125 ns to 100 s free ±125 ns to 100 s, res ±(1) 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	or 1% of offset) evel ndent on sweep time ne)) % of gate length	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay		125 ns to 100 s free ±125 ns to 100 s, res ±(1) 125 ns to 100 s, r	e run, video, external, IF le , resolution 125 ns min. (o e run, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s	or 1% of offset) evel ndent on sweep time ne)) % of gate length	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and couputs (front panel)		125 ns to 100 s free ±125 ns to 100 s, res ±(1) 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	evel endent on sweep time neel) % of gate length gth))	test part system EO O
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length		125 ns to 100 s free ±125 ns to 100 s, res ±(1) 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	or 1% of offset) evel ndent on sweep time ne)) % of gate length	test port system 50 Ω N female, K female ²
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and couputs (front panel)		125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	or 1% of offset) evel Indent on sweep time (ne)) 1% of gate length (gth)) test port system 50 Ω, N female,	
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB)		125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	or 1% of offset) evel Indent on sweep time (ne)) 1% of gate length (gth)) test port system 50 Ω, N female,	N female,
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input		125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (a erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1	evel ndent on sweep time ne)) % of gate length gth)) test port system 50 Ω, N female, 3.5 mm female²)	N female,
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz		125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r 125 ns to 100 s, r	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 25 ns + (0.05% x gate leng	evel ndent on sweep time ne)) % of gate length gth)) test port system 50 Ω, N female, 3.5 mm female²)	N female,
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <7 GHz		125 ns to 100 s free \pm 125 ns to 100 s, res \pm 1/1 125 ns to 100 s, r \pm 1/1 N female, 50 Ω	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 25 ns + (0.05% x gate leng	evel evel evel evel evel evel evel evel	N female, K female ²⁾
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <7 GHz f <13 GHz	_	125 ns to 100 s free \pm 125 ns to 100 s, res \pm 1/1 125 ns to 100 s, r \pm 1/1 N female, 50 Ω	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 25 ns + (0.05% x gate leng	evel evel Indent on sweep time (ne)) (% of gate length (gth)) test port system 50 Ω, N female, 3.5 mm female ²⁾ (hth) (ht	N female, K female ²⁾
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <13 GHz f <30 GHz	-	125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r ±(127 ns to 100 s, r	e run, video, external, IF le run, video, external, IF le clution 125 ns min. (ce run, video, external, IF le clution 125 ns min., depe 25 ns + (0.1% x delay time external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 (25 ns + (0.05% x gate length) 1.5:1	or 1% of offset) evel Indent on sweep time (% of gate length (gth)) test port system 50 Ω, N female, 3.5 mm female ²⁾ 2.5:1 3.6	N female, K female ²⁾ D:1
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <13 GHz f <30 GHz f <40 GHz Input attenuator	- - -	125 ns to 100 s free ±125 ns to 100 s, res ±(125 ns to 100 s, r ±(127 N female, 50 Ω	erun, video, external, IF le , resolution 125 ns min. (c erun, video, external, IF le olution 125 ns min., depe 25 ns + (0.1% x delay tim external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 25 ns + (0.05% x gate leng	or 1% of offset) evel Indent on sweep time (% of gate length (gth)) test port system 50 Ω, N female, 3.5 mm female ²⁾ 2.5:1 3.6	N female, K female ²⁾ D:1
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <7 GHz f <13 GHz f <40 GHz Input attenuator With option R&S FSP-B25	- - -	125 ns to 100 s free \pm 125 ns to 100 s, res \pm 4/1 125 ns to 100 s, r \pm (12 N female, 50 Ω	e run, video, external, IF le run, video, external, IF le colution 125 ns min. (colution 125 ns min., depe 25 ns + (0.1% x delay time external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 1.5:1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.5 1 2.0 4 2.0	or 1% of offset) evel Indent on sweep time (he)) (% of gate length (gth)) test port system 50 Ω, N female, 3.5 mm female ²) (2.5:1 2.5:1 3.6 — os not available	N female, K female ²⁾ D:1
Trigger Span ≥10 Hz Trigger source Trigger offset Span = 0 Hz Trigger source Trigger offset Max. deviation of trigger offset Gated sweep Trigger source Gate delay Gate length Max. deviation of gate length Imputs and outputs (front panel) RF input VSWR (RF attenuation >0 dB) f <3 GHz f <7 GHz f <30 GHz f <40 GHz Input attenuator	- - -	125 ns to 100 s free ±125 ns to 100 s, res ±(1) 125 ns to 100 s, r ±(12) N female, 50 Ω	e run, video, external, IF le run, video, external, IF le clution 125 ns min. (ce run, video, external, IF le clution 125 ns min., depe 25 ns + (0.1% x delay time external, IF level, video 1 µs to 100 s esolution min. 125 ns or 1 (25 ns + (0.05% x gate length) 1.5:1	or 1% of offset) evel Indent on sweep time (ne)) 1% of gate length (gth)) test port system 50 Ω, N female, 3.5 mm female ²⁾ 2:5:1 2:5:1 3.6 not available (nax. 150 mA	N female, K female ²⁾ D:1

	R&S FSP 3	R&S FSP 7	R&S FSP13	R&S FSP30	R&S FSP40	
Output impedance			10 Ω			
Open-circuit voltage	up to 1.5 V, adjustable					
Inputs and outputs (rear panel)						
IF 20.4 MHz			$Z_{out} = 50 \Omega$, BNC female			
Level			out ,			
RBW ≤30 kHz, FFT		-10 dBm at	reference level, mixer level	>-60 dBm		
RBW ≥100 kHz		0 dBm at	reference level, mixer level :	>60 dBm		
Reference frequency						
Output			BNC female			
Output frequency			10 MHz			
Level			0 dBm, nominal			
Input			10 MHz			
Required level			0 dBm into 50 Ω			
Others						
Power supply for noise source		BNC female,	0 V and 28 V, switchable, r	nax. 100 mA		
External trigger/gate input			BNC female, $>$ 10 k Ω			
Trigger voltage			1.4 V (TTL)			
IEC/IEEE bus remote control			· ,			
interface to IEC 625-2 (IEEE 488.2)						
Command set			SCPI 1997.0			
Connector			24-pin Amphenol female			
Interface functions		SH1, AH1	, T6, L4, SR1, RL1, PP1, DC1	, DT1, C0		
Serial interface		RS-23	2-C (COM), 9-pin D-sub con	nector		
Printer interface		pa	rallel (Centronics-compatib	le)		
Mouse connector			PS/2 female			
Connector for ext. monitor (VGA)			15-pin D-sub connector			
General data						
Display		2	1 cm TFT colour display (8.4	")		
Resolution		64	0 x 480 pixels (VGA resolution	on)		
Pixel failure rate			$<2 \times 10^{-5}$			
Mass memory		1.44 MBy	te 3 ½" disk drive (built-in),	hard disk		
Data storage		>500) instrument settings and tr	aces		
Temperatures						
Operating temperature range			+5 °C to +40 °C			
Permissible temperature range			+5 °C to +45 °C			
Storage temperature range			−40 °C to +70 °C			
Damp heat		+40 °C at	95% relative humidity (EN 6	0068-2-30)		
Mechanical resistance						
Vibration, sinusoidal	5 Hz to 150 Hz, ma	ax. 2 g at 55 Hz; 0.5 g fro	m 55 Hz to 150 Hz; meets E MIL-T-28800D, class 5	N 60068-2-6, EN 60068-2	2-30, EN 61010-1,	
Vibration, random		10 Hz	to 100 Hz, acceleration 1 g	(rms)		
Shock test	4		ets MIL-STD-810C and MIL-)	
Recommended calibration interval		2 years for operation wi	th external reference,1 year	with internal reference		
Power supply						
AC supply	100 \	/ AC to 240 V AC, 50 Hz	to 400 Hz, 3.1 A to 1.3 A, cla	ass of protection I to VDE	411	
Typical power consumption	70 VA	120 VA		150 VA		
Safety		meets EN 61010-1,	UL 3111-1, CSA C22.2 No.	1010-1, EN 61010-1		
RFI suppression		meets EMC Direct	ive of EU (89/336/EEC) and	German EMC law		
Test mark			VDE, GS, CSA, CSA-NRTL/C			
Dimensions in mm (W x H x D)			412 x 197 x 417			
Weight	10.5 kg	11.3 kg		12 kg		

 $^{^{1)}}$ $\,$ RF attenuation 10 dB, sweep time $>\!$ 1s/1 GHz.

²⁾ See recommended extras for alternate connectors.

Specifications of options

Tracking Generator R&S FSP-B9
Unless specified otherwise, specifications not valid for frequency range from $-3 \times RBW$ to $+3 \times RBW$, however at least not valid from $-9 \times RBW$. The specified level accuracy of the tracking generator is valid under the following conditions: RF attenuation $\ge 20 \times RBW$.

Frequency	wing conditions. In attendation 220 db and sweep time 22000 ms
Frequency range	9 kHz to 3 GHz
Frequency offset	J KIIZ (U J UIIZ
Setting range	±150 MHz
Resolution	1 Hz
Spectral purity (dBc (1 Hz)) SSB phase noise, f = 500 MHz, carrier offset 100	
Normal mode	typ. –90
With FM modulation on	typ. —30 typ. —70
Level	tγp. —70
Level setting range	-30 dBm to 0 dBm in steps of 0.1 dB
Level setting range with AM	-30 dBm to -6 dBm in steps of 0.1 dB
0 0	·
Max. deviation of output level, 128 MHz, 0 dBm	<1 dB
Frequency response	4.10
Output level 0 dBm, 100 kHz to 2 GHz	<1 dB
Output level 0 dBm to -25 dBm, 9 kHz to 3 GHz	<3 dB
Dynamic range	
Attenuation measurement range, RBW = 1 kHz, f > 10 MHz	120 dB
Spurious	
Harmonics, output level –10 dBm	−30 dBc typ.
Nonharmonics, output level 0 dBm	−30 dBc typ.
Modulation	
Modulation format (external)	I/Q, AM, FM, FM-DC, PM, ASK, FSK
AM, f >10 MHz	
Modulation depth	0% to 99%
Modulation frequency range	0 Hz to 1 MHz
FM, f >10 MHz	
Frequency deviation	0 Hz to 20 MHz
Modulation frequency range	0 Hz to 100 kHz
I/Q modulation, f >10 MHz	
0 Hz to 30 MHz	1 dB typ.
Inputs and outputs (front panel)	
RF output	N female, 50 Ω
VSWR	2:1 typ.
Inputs and outputs (rear panel)	
TG/AM IN	$V_{max[pp]} = 1 \text{ V; } Z_{in} = 50 \Omega$, BNC female
TG Q/FM IN	$V_{\text{max(pp)}} = 1 \text{ V; } Z_{\text{in}} = 50 \Omega, \text{ BNC female}$
'	
External Generator Control R&S FSP-B10	
Supported signal generators	SME02/03/06, SMG, SMGL, SMGU, SMH, SMHU,
	SMIQ02B/02E/03B/03E/04B/06B
	SML, SMR 20/27/30/40/60
	SMP02/22/03/04, SMX, SMY
	SMT02/03/06
LAN Interface R&S FSP-B16	
Connector (rear panel)	RJ-45
Supported protocols	10Base-T (IEEE standard 10 Mbit/s 802.3) 100Base-Tx (IEEE standard 100 Mbit/s 802.3u)
Extended Environmental Specification R&S FSP-B20	
Temperature range (non condensing)	
Operating temperature range	0°C to +50°C
Permissible temperature range	0°C to +55°C
Mechanical resistance	
Vibration, random	10 Hz to 300 Hz, acceleration 1.9 g (rms)
!	

Electronic Attenuator R&S FSP-B25 (only for R&S FSP3 and R&S FSP7)

Electronic Attenuator R&S FSP-B25 (only for R&S FSP3	anu noo for ()
Frequency	
Frequency range	10 MHz to 7 GHz
Input attenuator range (mechanical)	0 dB to 75 dB in 5 dB steps
Electronic attenuation range	0 dB to 30 dB in 5 dB steps
Preamplifier	20 dB. switchable
Displayed average noise level with preamplifier on	
(0 dB RF attenuation, RBW 10 Hz, VBW 1 Hz, 20 averages, trace ave	erage, span 0 Hz, termination $50~\Omega)$
10 MHz to 2 GHz	<-152 dBm
2 GHz to 7 GHz	<-150 dBm
Intermodulation with electronic attenuator on	
3rd-order intermodulation, intermodulation-free dynamic range, leve	el 2 x –30 dBm. Af >5 x BBW or 10 kHz, whichever is larger
20 MHz to 200 MHz	>74 dBc, TOI >7 dBm
200 MHz to 3 GHz	>80 dBc, T0I >10 dBm
3 GHz to 7 GHz	>84 dBc, T0I >12 dBm
Max. deviation of level measurement	>04 UDC, 101 > 12 UDIII
128 MHz, –30 dBm (RF attenuation 10 dB, RBW 10 kHz, ref. level –20 dBm), preamplifier ON	$<$ 0.2 dB (σ = 0.07 dB)
Electronic attenuator	$< 0.2 \text{ dB } (\sigma = 0.07 \text{ dB})$
Frequency response with preamplifier, electronic attenuator	
10 MHz to 3 GHz	$<$ 1.0 dB (σ = 0.33 dB)
3 GHz to 7 GHz	$< 2 dB (\sigma = 0.7 dB)$
R&S FSP-B30 DC Power Supply	
Input voltage range	10 V to 28 V DC
	25 A to 12.5 A
Output voltage	120 V to 360 V DC/300 W
Current consumption (V DC = 12V, FSP without options, preset	
R&S FSP3	6 A typ.
R&S FSP30	8 A typ.
Temperature range	0 °C to +50 °C −40 °C to +70 °C
Storage temperature range Dimensions (W x H x D)	145 mm x 154 mm x 65 mm
Weight	0.6 kg
R&S FSP-R31/-B32 Battery Pack	U.U kg
NiMH-Battery Pack with built-in load control for all R&S FSP and R&	S ESPI models with ontions R&S ESP-B1 and R&S ESP-B30
Input voltage of battery pack	10 V to 28 V DC
Input voltage power supply (battery charge)	24 V DC/max. 3 A
Output voltage	
Battery operation	13.2 V DC / 200 Wh
Bypass operation	10 V to 28 V DC/10 A
Typical operation times (R&S FSP without options)	
R&S FSP3	2 h
R&S FSP30	1.5 h
Charging time	5 h at 25°C
Operating temperature range (discharging)	0 °C to +50 °C +10 °C to +40 °C
Operating temperature range (charging)	+10°C to +40°C -20°C to +35°C
Storage temperature range (<1 year) Storage temperature range (<1 month)	−20 °C to +55 °C
Dimensions (W x H x D)	400 mm x 134 mm x 42 mm
Weight	3.7 kg
AC adapter (FSP-B31 only)	
Input voltage range	100 V to 240 V AC ± 10 %
Input frequency range	50 Hz to 60 Hz ± 5 %
iliput liequelity laliqe	
Input power	140 VA
	140 VA 24 V
Input power	
Input power Output voltage	24 V
Input power Output voltage Output current Operating temperature range Storage temperature range	24 V 3 A
Input power Output voltage Output current Operating temperature range	24 V 3 A 0°C to +50°C

Ordering information

Order designation		
Spectrum Analyzer 9 kHz to 3 GHz	R&S FSP 3	1093.4495.03
Spectrum Analyzer 9 kHz to 7 GHz	R&S FSP 7	1093.4495.07
Spectrum Analyzer 9 kHz to 13.6 GHz	R&S FSP13	1093.4495.13
Spectrum Analyzer 9 kHz to 30 GHz	R&S FSP30	1093.4495.30
Spectrum Analyzer 9 kHz to 40 GHz	R&S FSP40	1093.4495.40

Accessories supplied

Power cable, operating manual, service manual

R&S FSP 30: test port adapter 3.5 mm female (1021.0512.00) and N female (1021.0535.00)

R&S FSP 40: test port adapter K female (1036.4770.00) and N female (1036.4777.00)

Options

Order designation	Туре	Order No.
Delete Manuals	R&S FSP-B0	1129.8394.02
Rugged case, carrying handle (factory-fitted)	R&S FSP-B1	1129.7998.02
AM/FM Audio Demodulator ¹⁾	R&S FSP-B3	1129.6491.02
OCXO Reference Frequency	R&S FSP-B4	1129.6740.02
TV Trigger/RF Power Trigger	R&S FSP-B6	1129.859.4.02
Internal tracking Generator 9 kHz to 3 GHz, I/Q modulator, for all R&S FSP models	R&S FSP-B9	1129.6991.02
External Generator Control for all R&S FSP models	R&S FSP-B10	1129.7246.02
Pulse Calibrator for R&S FSP ^{2) 3)}	R&S FSP-B15	1155.1006.02
LAN Interface 100BT for all R&S FSP models	R&S FSP-B16	1129.8042.02
Extended Environmental Specification	R&S FSP-B20	1155.1606.02
Electronic Attenuator, 0 dB to 30 dB, 5 dB steps, integrated preamplifier for R&S FSP3 and R&S FSP7	R&S FSP-B25	1129.7746.02
DC Power Supply for Spectrum Analyzers R&S FSP	R&S FSP-B30	1155.1158.02
Battery Pack for Spectrum Analyzers R&S FSP ⁴⁾	R&S FSP-B31	1155.1258.02
Spare Battery Pack for Spectrum Analyzers R&S FSP ⁵⁾	R&S FSP-B32	1155.1506.02
Demodulation Hardware and Memory Extension ³⁾⁶⁾	R&S FSP-B70	1157.0559.02
Software	1	
Noise Measurement Software	R&S FS-K3	1057.3028.02
Phase Noise Measurement Software	R&S FS-K4	1108.0088.02
GSM/EDGE Application Firmware, Mobile	R&S FS-K5	1141.1496.02
AM/FM Measurement Demodulator	R&S FS-K7	1141.1796.02
Application Firmware for <i>Bluetooth</i> Measurements	R&S FS-K8	1157.2568.02
3GPP BTS/NodeB FDD Application Firmware ⁷⁾	R&S FS-K72	1154.7000.02
3GPP UE FDD Application Firmware ⁸⁾	R&S FS-K73	1154.7252.02
CDMA2000 BTS FDD Application Firmware	R&S FS-K82	1154.7252.02

Recommended extras

Order designation	Type	Order No.	
Headphones		0708.9010.00	
US Keyboard with trackball	R&S PSP-Z2	1091.4100.02	
PS/2 Mouse	R&S FSE-Z2	1084.7043.02	
DC Block, 5 MHz to 7 GHz (Typ N)	R&S FSE-Z3	4010.3895.00	
DC-Block,10 kHz to 18 GHz (Typ N)	R&S FSE-Z4	E-Z4 1084.7443.02	
Colour Monitor, 15", 230 V	R&S PMC3 1082.6004.02		
IEC/IEEE-Bus Cable, 1 m	R&S PCK	S PCK 0292.2013.10	
IEC/IEEE-Bus Cable, 2 m	R&S PCK 0292.2013.20		
19" Rack Adapter (not for R&S FSP-B1)	R&S ZZA 478 1096.3248.00		
Soft carrying case, grey	R&S ZZT473	1109.5048.00	
Matching Pads, 75 Ω			
L Section	R&S RAM	0358.5414.02	
Series Resistor, 25 $\Omega^{(1)}$	R&S RAZ	0358.5714.02	
SWR Bridge, 5 MHz to 3 GHz	R&S ZRB2	0373.9017.52	
SWR Bridge, 40 kHz to 4 GHz	R&S ZRC	1039.9492.52	
High-Power Attenuators, 100 W			
3/6/10/20/30 dB	R&S RBU 100	1073.8820.XX (XX=03/06/10/20/30)	
High-Power Attenuators, 50 W		I .	
3/6/10/20/30 dB	R&S RBU 50	1073.8895.XX (XX=03/06/10/20/30)	
For R&S FSP30	•		
Test port adapter, 3.5 mm male	-	1021.0529.00	
Test port adapter, N male	-	1021.0541.00	
Microwave Measurement Cable and Adapter Set	R&S FS-Z15	1046.2002.02	
For FSP 40	<u>'</u>	I	
Test port adapter K male	-	1036.4802.00	
Test port adapter N male	-	1036.4783.00	
Test port adapter 2.4 mm female	R&S FSE-Z5	1088.1627.02	

Taken into account in device function RF INPUT 75 Ω .

Related data sheets

TV Trigger/RF Power Trigger R&S FSP-B6	PD 757.6433	
Noise Measurement Software R&S FS-K3 for Spectrum Analyzers R&S FSE, R&S FSIQ and R&S FSP	PD 757.2380	
Phase Noise Measurement Software R&S FSE-K4	PD 757.4201	
GSM/EDGE Application Firmware R&S FS-K5 for R&S FSP	PD 757.6185	
FM-Measurement Demodulator for R&S FSP FS-K7	PD 0757.6685	
Bluetooth Application Firmware R&S FSP FS-K8	PD 0757.7730	
WCDMA 3GPP Application Firmware R&S FS-K72/-K73	PD 0757.7246	
CDMA2000 Base Station Test Application Firmware R&S FS-K82	PD 0757.7675	

- Not with Option FSP-B15.
- Not with Option FSP-B3.
- Required for R&S FS-K72/K73.
- R&S FSP-B1 and R&S FSP-B30 required.
- R&S FSP-B31required.
- R&S FSP-B15 required.
- R&S FSP-B15 and -B70 required.
- R&S FSP-B15 required, R&S FSP-B70 recommended.

The Spectrum Analyzers R&S FSP from Rohde & Schwarz...

- Unparalleled range of functions
- Highest measurement speed
- Maximum in precision

With the new R&S FSP family, the well-known advantages of the Rohde & Schwarz high-end analyzers have been systematically integrated into the medium class of analyzers. The R&S FSP sets the standard for the medium-class regarding the vital criteria of functionality, measurement speed and accuracy. The use of innovative techniques such as an highly integrated front-end and fully digital signal processing in the back-end, together with ASICs developed by Rohde & Schwarz, has resulted in a product of top-class specifications and high reliability.

...the new medium-class standard

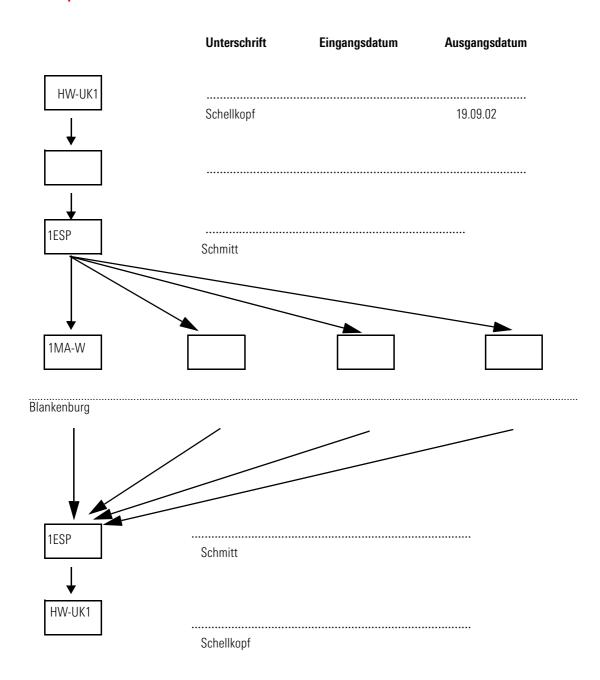
Schnittkante für die Einklappseite

Position: Einklapper hängt an der Titeseite!

A wealth of functions ...

The R&S FSP option list is short — all important functions and interfaces are implemented as standard. The R&S FSP features future-oriented characteristics such as an RMS detector and a CCDF routine for fast statistical measurements on digitally modulated signals not offered by any other medium-class spectrum analyzer.

Function/Option	Standard	Option
Highly selective digital filters from	Otanuara	option.
10 Hz to 100 kHz	•	
Fast FFT filters from 1 Hz to 30 kHz		
QP detector & EMI bandwidths 200 Hz,		
9 kHz, 120 kHz	•	
2.5 ms sweep time in frequency do-		
main	•	
1 µs sweep time in time domain	•	
Time-selective spectrum analysis with	_	
gating	•	
GPIB interface, IEEE 488.2	•	
RS-232-C serial interface, 9-pin D-sub	•	
VGA output, 15-pin D-sub	•	
PC-compatible screenshots on floppy	_	
disk or hard disk	•	
Measurement speed manually		
up to 20 measurements/s	•	
Measurement speed GPIB		
up to 30 measurements/s	•	
SCPI-compatible GPIB command set	•	
R&S FSE/FSIQ-compatible GPIB		
command set		
Fast ACP measurements in time do-		
main		
CCDF measurement functions	•	
RMS detector with 100 dB dynamic		
range		
2-year calibration interval	•	
3-year warranty ¹⁾	•	
Cabinet for portable use	_	B1
AM/FM audio demodulator	_	В3
OCXO reference frequency	-	B4
TV trigger/RF power trigger	_	B6
Tracking generator	_	B9
External generator control	_	B10
LAN interface	_	B16
Electronic attenuator	_	B25
DC power supply	_	B30
Battery pack/spare battery pack	_	B31/B32


¹⁾ Except parts that are subject to wear (e.g. attenuator).

... the new medium-class standard

Schnittkante für die Einklappseite

Datenblatt-Umlauf Spectrum Analyzer R&S FSP

Bitte beachten Sie Ihre GB-internen Umlaufmodalitäten Bildinhalte prüfen!!!

Redaktionsschluss:

Bemerkungen: